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Abstract Enzymes play vital roles in life processes. Almost all biochemical
reactions are mediated by enzymes. The rate constants of enzyme kinetics are the
most important parameters for the reactions catalyzed by enzymes. In 1902, Adrian
Brown proposed a simple single-substrate-single-product model which contains only
three rate constants k1, k−1 and k2. So far, biologists can measure the Michaelis con-
stant KM and the catalytic constant kcat , which actually is equal to k2, according to
Michaelis–Menten equation. Using temperature jump method or transient state kinet-
ics, k1, k−1 and k2 can be determined. However, these methods are complicated. In this
article, we design a novel simple method that could determine the rate constants k1 and
k−1 based on knowing kcat and KM . Our numerical experiments show that the three
rate constants can be calculated rather precisely. Hence, we believe that biochemists
could design experiments to measure the rate constants based on our method.
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1 Introduction

Enzymes play important roles in life processes [6]. They are involved in almost all
chemical reactions concerning metabolism. The rate of reactions and the change of rate
of reactions under different conditions contain information on functions and structures
of enzymes. Thus, a major problem of enzyme kinetics is to determine the enzymatic
reaction rates, which is stated in many famous text books such as [27].

Brown [4], as the first one to study enzyme kinetics, proposed the basic model for
enzyme kinetics. In his model, there is only one substrate S, which is catalyzed by
enzyme E into product P . This reaction consists of two successive elementary reac-
tions. The substrate and enzyme form a complex called enzyme-substrate complex
denoted by C in the first reaction, and the complex breaks down into product and
enzyme in the second one:

E + S
k1�

k−1
C

k2→ P + E, (1)

Here k1 and k−1 denote, respectively the forward and reverse rate constants of the
formation of the enzyme-substrate complex, and k2 denotes the rate constant of the
decomposition of the complex into product and enzyme.

This reaction process can then be described by the following system of differential
equations [24]:

d S(t)/dt = −k1S(t)E(t) + k−1C(t) (2)

d E(t)/dt = −k1S(t)E(t) + (k−1 + k2)C(t) (3)

dC(t)/dt = k1S(t)E(t) − (k−1 + k2)C(t) (4)

d P(t)/dt = k2C(t) (5)

with the initial condition

(S(0), E(0), C(0), P(0)) = (S0, E0, 0, 0), (6)

where E(t), S(t), C(t) and P(t) denote the concentrations of enzyme, substrate,
enzyme-substrate complex and product at time t during the process, respectively.
Obviously, we have the following equalities:

E(t) + C(t) = E0 (7)

S(t) + C(t) + P(t) = S0. (8)

Owing to these equalities, the reaction can be described by (S(t), E(t)), (S(t), P(t))
or (P(t), E(t)). Furthermore, the (2–5) are equivalent to Eqs. 10 and 11 below.

As these systems of differential equations can not be explicitly integrated, many
enzymologists added more conditions or assumptions on these systems to simplify this
problem. Michaelis and Menten [16] added the condition that k−1 � k2. However, this
condition is usually unrealistic and has little usage. Briggs and Haldane [3] proposed
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the famous assumption in enzyme kinetics, i.e. the Quasi-Steady-State Assumption
(QSSA) under a more realistic condition S0 � E0. Recently, [11] have proved that
QSSA is always true if S0 � E0, and hence call it Quasi-Steady-State Law (QSSL).

By QSSL, the Eqs. (2–5) can be approximately solved explicitly, and some relations
between rate constants can be gotten. Especially, Briggs and Haldane got the famous
Michaelis–Menten equation:

v0 = VmaxS/(KM + S), (9)

where KM is the Michaelis constant defined as KM = (k−1 + k2)/k1, v0 is the ini-
tial velocity of the reaction and Vmax = k2 E0 is called the maximal velocity, which
is indeed the supremum of the velocity but is never reached. In fact, the Michaelis–
Menten equation holds not only at assemble level of enzyme molecules, but also at
single-molecule level by the statistical analysis of the stochastic behave of single-
molecule enzyme catalysis [1, 6]. Lineweaver and Burk [12] found that the reciprocal
form of the Michaelis–Menten equation can be used to calculate KM and Vmax. Then
k2 follows by the equality Vmax = k2 E0.

There are many books discussing the estimations of k2 and KM based on the recip-
rocal form of Michaelis–Menten equation such as [22, 23, 27]. Besides this method,
some more effective methods are also considered [8, 19–21]. Linearizations like the
one proposed by Lineweaver and Burk are of relative poor accuracy [5], although they
gave nice approximation in an era when we had no computers. Nowadays, kinetic
data are commonly treated by computers using complicated statistical methods such
as nonlinear regression [27]. In a word, k2 and KM have already been possible to be
measured.

By using temperature jump method or transient state kinetics, all the three rate
constants k1, k2 and k−1 can be determined. However, these methods are somewhat
complicated, and require particular equipments. So far, no paper gives methods to
calculate all the three rate constants like Lineweaver–Burk’s method, i.e. one needs
only to measure concentrations of reactants at a few different times.

Since KM can be determined, it yields a relation between k1 and k−1. In order to
measure all the three rate constants, we must find another relation between k1 and k−1.
In this paper, we find that all the trajectories (S(t), E(t)) started from different initial
concentrations of substrate have the same tangent at the end. With such an additional
relation, k1 and k−1 can be completely calculated. Numerical experiments show that
our method is effective. Hence, biochemists can design experiments based on our
method to measure all rate constants.

Our method is derived by rigorous mathematics. Mathematics has been applied
to biology in many directions, such as the application of game theory to evolution
by [25, 26] and chaos to ecology by [15]. Interesting applications of mathematics to
biology can be found in many fundamental books on mathematical biology, such as
[17, 18] and [7]. The qualitative theory of dynamical systems has more than 100 years’
history [2], and is applied to many disciplines of sciences including biology [9, 13,
14]. In this paper, we utilize this theory to analyze enzyme kinetics data, and it seems
very effective. Perhaps, the most surprising thing is that the result we got here can be
checked by biochemical experiments in principle.
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Section 2 gives the details of our method. Section 3 illustrates some numerical
experiments to test our method. Moreover, some discussions about our method and
some suggestions to biologists for designing experiments are proposed. Section 4
is the conclusion section. The mathematical foundations of the method are given in
Appendix.

2 Method to measure all the rate constants

In the single-substrate-single-product enzyme reaction (1), k1, k2 and k−1 are three
rate constants. There are many methods for determining the parameters of the Michae-
lis–Menten equation (i.e. Vmax and KM ). By knowing Vmax and KM , we already know
k2 and a relation between k1 and k−1. So, what we need to evaluate k1 and k−1 is
another relation between k1 and k−1.

The reaction can also be described by equations

d S/dt = −k1SE + k−1(E0 − E), (10)

d E/dt = −k1SE + (k−1 + k2)(E0 − E), (11)

with the initial condition (S(0), E(0)) = (S0, E0), which is equivalent to system
(2–8).

Now, a new relation between k1 and k−1 is given by

T1 = −
(

k1 E0 − (k−1 + k2) +
√

(k1 E0 + k−1 + k2)2 − 4k1k2 E0

)/
2k−1, (12)

where T1 = lim
t→+∞ (E(t) − E0) /S(t). (The detailed deduction of this relation is in

Appendix.) For convenience, we denote the concentrations of substrate, enzyme and
product at the moment t̂ near the end of the reaction by Ŝ, Ê and P̂ , respectively.
Hence, T1 can be approximated by T̂1 = (Ê − E0)/Ŝ (see Figs. 1 and 2). Moreover, as
(Ŝ, Ê) approaches the end point (0, E0) of the reaction, T̂1 = (Ê − E0)/Ŝ approaches
T1.

Then, by (12) and the following two equations

Vmax = k2 E0, (13)

KM = (k−1 + k2)/k1, (14)

k1, k2 and k−1 are solved as,

k2 = Vmax/E0, (15)

k1 = (Vmax/E0)T
2
1

/(
KM (−T1 + T 2

1 ) − E0(−T1 + 1)
)
, (16)

k−1 = KM

(
(Vmax/E0)T

2
1

/(
KM (−T1 + T 2

1 ) − E0(−T1 + 1)
))

−Vmax/E0. (17)
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Fig. 1 Trajectories of different reactions: each curve indicates the trajectory of the concentrations of enzyme
and substrate from different initial conditions. All of them have a common tangent line at the end point
(0, 1). In other words, the ratio of (E − E0)/S on each trajectory approximates the slope of the tangent line
when S is sufficiently small
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Fig. 2 Secant line versus tangent line: Slope of the secant line between two red points is (Ê − E0)/Ŝ,
which approximates the slope of the tangent line, when Ŝ is sufficiently small

Since Vmax and KM are assumed known, estimates of k1, k2 and k−1 are obtained
from Eqs. 15–17, if T1 is replaced by T̂1 = (Ê − E0)/Ŝ.

Define

k̂1(T̂1) = (Vmax/E0)T̂
2
1

/(
KM (−T̂1 + T̂ 2

1 ) − E0(−T̂1 + 1)
)

. (18)

Then k1 = k̂1(T1).
The Taylor expansion of k̂1(T̂1) at T1 is

k̂1(T̂1) = k̂1(T1) − M(T̂1 − T1) + o(|T̂1 − T1|2), (19)
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where M is a constant equal to

(Vmax/E0)T1 (KM T1 − E0T1 + 2 E0)

/(
−KM T1 + KM T1

2 + E0T1 − E0

)2

When one uses T̂1 instead of T1, the error between k1 and k̂1 is |k1 − k̂1| = |M ||T̂1 −
T1| + o(|T̂1 − T1|2), which shows that k̂1 approximates k1 better, when T̂1 is more
approximate to T1.

Use the same method, we could have |k−1−k̂−1| = KM |M ||T̂1−T1|+o(|T̂1−T1|2),
which shows the same result that k̂−1 approximates k−1 better, when T̂1 is more approx-
imate to T1.

3 Results and discussions

3.1 Numerical simulations

In the above section, we mentioned that T1 could be approximated by (Ê − E0)/Ŝ,
and then, more importantly, the rate constants k1, k2 and k−1 could be calculated.

So, in this section, we simulate the reaction processes by computers to show how
to evaluate the three rate constants and how well our method works. In the follow-
ing simulations, we use fourth order Runge-Kutta method to calculate the reaction
processes, and the step-length is set as 0.00002.

T1 can be approximated by (Ê − E0)/Ŝ if Ŝ is small enough. At first, we do some
numerical experiments to show that T1 can be well estimated if a proper Ŝ and its
corresponding Ê are measured.

As stated above, the process of the reaction (1) can be described by Eqs. 10 and
11 with the initial condition (S(0), E(0)) = (S0, E0). After setting the rate constants
k1 = 0.3, k2 = 0.2, k−1 = 0.1 and the initial condition (S(0), E(0)) = (20, 0.5),
the time evolutions of E(t) and S(t) can be calculated by numerical integration. The
trajectory of (S(t), E(t)) is plotted in Fig. 3.

In the above reaction,

T1 = −
(

k1 E0 − (k−1 + k2) +
√

(k1 E0 + k−1 + k2)2 − 4k1k2 E0

)/
2k−1

= −0.6861. (20)

Several pairs of (Ŝ, Ê) are chosen, and the corresponding values of T̂1 are calculated.
The results are listed in Table 1. From the results, we observe as expected that T1 is
well approximated by T̂1 as (Ŝ, Ê) approaches the point (0, E0).

Since we have had the approximation of T1, that is T̂1, the three rate constants k1,
k2 and k−1 can be solved by Eqs. 15–17. Assuming KM and Vmax are exact, we can
see clearly the error caused by our method.

In this numerical experiment, we have KM = (k−1 + k2)/k1 = 1 and Vmax =
k2 E0 = 0.1. So k̂2 = Vmax/E0 = 0.2. For different values of T̂1, we have different k̂1
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Fig. 3 Trajectory of a reaction (1): the rate constants are k1 = 0.3, k2 = 0.2 and k−1 = 0.1, and the initial
condition is (S(0), E(0)) = (20, 0.5)

Table 1 The first two columns of this table list the concentrations of Ŝ and Ê , respectively

Ŝ Ê T̂1 k̂1 k̂2 k̂−1

0.0400 0.4749 −0.6283 0.3779 0.2 0.1779

0.0360 0.4772 −0.6334 0.3682 0.2 0.1682

0.0320 0.4796 −0.6386 0.3591 0.2 0.1591

0.0280 0.4820 −0.6440 0.3504 0.2 0.1504

0.0240 0.4844 −0.6495 0.3422 0.2 0.1422

0.0200 0.4869 −0.6551 0.3343 0.2 0.1343

0.0160 0.4894 −0.6609 0.3268 0.2 0.1268

0.0120 0.4920 −0.6669 0.3197 0.2 0.1197

0.0080 0.4946 −0.6731 0.3129 0.2 0.1129

0.0040 0.4973 −0.6795 0.3063 0.2 0.1063

0.0020 0.4986 −0.6828 0.3031 0.2 0.1031

0.0010 0.4993 −0.6845 0.3016 0.2 0.1016

0.0005 0.4997 −0.6853 0.3008 0.2 0.1008

0.0001 0.4999 −0.6860 0.3002 0.2 0.1002

The third column lists the estimated values of T1, which are denoted by T̂1. And the last three columns give
the corresponding estimations of k̂1, k̂2 and k̂−1

123



J Math Chem (2009) 46:290–301 297

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
-0.7

-0.68

-0.66

-0.64

-0.62

S
m

T
1

estimated T
1

exact T
1

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

0.3

0.35

0.4

S
m

k 1

estimated k
1

exact k
1

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

0.1

0.15

0.2

S
m

k -1

estimated k
-1

exact k
-1

Fig. 4 Estimated values: From top to bottom, they indicate the estimations of T1, k1 and k−1 with respect
to different values of Ŝ from 0.04 to 0, respectively

and k̂−1. Calculating results show that our method is a better approximate when T̂1 is
more approximate to T1.

To give a more detailed and straightforward description of our experimental results,
we plot them in a graph (see Fig. 4). From this graph, we can obviously see that T1, k1
and k−1 can be well calculated as long as sufficiently small Ŝ and its corresponding
Ê were measured.

3.2 Discussion

So far, we have introduced a method to evaluate the rate constants, and the results of
our numerical experiments show the effectiveness of the method. For the equalities
(7) and (8), we claim that if biochemists can measure any of the pairs (Ŝ, Ê), (Ŝ, P̂)

and (P̂, Ê) in a single-substrate-single-product enzyme catalyzed reaction, the three
rate constants can be calculated rather precisely. And theoretically, the nearer the end
of the reaction the measurements are done, the more accurate the results are. This is
also supported by the simulations in the last section. As listed in Table 1, when Ŝ
approaches 0, the approximations k̂1, k̂2 and k̂−1 approach their exact values.

However, we do not suggest biologists to do measurements too close to the end
of the reaction in experiments. Because if it is done too close to the end, any small
measurement error will lead to large error in T1, and hence to large errors in k1 and
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Table 2 The first two columns of this table list the concentrations of Ŝ and Ê , respectively

Ŝ Ê T̂1 k̂1 k̂−1

0.22017669 0.39493330 −0.4772 −1.3518 −1.5518

0.09902899 0.44402015 −0.5653 0.6254 0.4254

0.00472997 0.49679151 −0.6783 0.3075 0.1075

0.00005564 0.49996183 −0.6860 0.3001 0.1001

0.00001376 0.49999056 −0.6861 0.3000 0.1000

0.00000322 0.49999779 −0.6861 0.3000 0.1000

0.00000039 0.49999973 −0.6865 0.2997 0.0997

0.00000009 0.49999994 −0.7155 0.2769 0.0769

0.00000003 0.49999999 −0.4413 −0.4602 −0.6602

The third column lists the estimated values of T1, which are denoted by T̂1. And the last two columns give
the corresponding estimations of k̂1 and k̂−1. In each cases, k̂2 = 0.2, so we do not list them in this table
explicitly

k−1. Such kind of cases occur as well as in numerical simulations, if the precision of
the simulation is low. Table 2 gives an example showing such cases.

For the numerical experiment in Table 2, the reaction processes of (10) and (11)
are simulated by the Runge-Kutta-Fehlberg method in Matlab by setting k1 = 0.3,
k2 = 0.1, k−1 = 0.1, S0 = 20 and E0 = 0.5.

In this simulation we see that, if some properly small Ŝ and its correspondence Ê
were chosen, T1 and then k1, k2 and k−1 are calculated with small deviations from
their exact values (see Row 3 to 7 in Table 2). However, when Ŝ was too small, for the
unavoidable errors of numerical integration, the errors of Ŝ would lead to large errors
in T1, k1 and k−1 (see the last two rows in Table 2). The details are shown in Table 2.
Here we do not discuss the accuracy about k2, because in this article we assume KM

and Vmax have been given.
In the view point of theoretical analysis, the measurement should be done near

the end of the reactions for the accuracy. But considering the unavoidable measure-
ment errors, it should not be done too close to the end. So, some tradeoff should be
considered in biochemical experiments.

Actually, to evaluate KM and Vmax accurately is still a challenge, which attracts
many talented scientists to study. The good performance of our methods depends
partially on evaluating KM and Vmax accurately. So, further study to evaluate the
rate constants k1, k2 and k−1 together by measuring only concentrations, without the
assumption that KM and Vmax are know, is expected.

4 Conclusion

Enzyme kinetics, as an important branch of enzymology, is to study the rates of chem-
ical reactions catalyzed by enzymes. So, how to measure the rate constants in enzyme
catalyzed reactions naturally becomes a fundamental problem in enzyme kinetics.
Now biochemists can determine these constants by the temperature jump method or
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transient state kinetics. But the necessary equipments and techniques limit the use of
these methods.

In this article, we proposed a novel method to calculate all the three rate constants in
(1), in which only one pair of concentrations of the reactants are needed. This method
is based on carefully analyzing the structure of integral curves near the singularity
point in a dynamical system.

To test our method we did some numerical analysis, and the results showed its
effectiveness.

By this method, all the three rate constants can be calculated. Knowing all the
rate constants should be helpful for deeper insights to the function and structure of
enzymes. Furthermore, it gives more information about the reaction mechanism.

Acknowledgements The authors sincerely appreciate the reviewers’ work done for this article. It certainly
improved the quality of this article, in either expression or language.

Appendix

It will be seen in this appendix that the system of differential equations we encoun-
tered is an autonomous system on the plane having only one singularity, that is a stable
nodal point. Moreover, the solutions, i.e. the integral curves of the system under initial
conditions which have biological meaning will approach the singularity when time
goes to infinity. And these integral curves must enter the singularity in the direction
of the eigenvector with the smaller absolute value of the eigenvalue [10, pp. 90–94].

Consider the system

{
d S/dt = −k1SE + k−1(E0 − E),

d E/dt = −k1SE + (k−1 + k2)(E0 − E).
(21)

We have studied this system in our former paper [11].
The singularity of this system is (S, E) = (0, E0). The linearization of this system

around this singularity is

{
d S/dt = −k1 E0S − k−1(E − E0),

d E/dt = −k1 E0S − (k−1 + k2)(E0 − E).
(22)

And its characteristic equation is

λ2 + (k1 E0 + k−1 + k2)λ + k1k2 E0 = 0, (23)

where λ are the eigenvalues and can be solved as

λ =
(

−(k1 E0 + k−1 + k2) ±
√

(k1 E0 + k−1 + k2)2 − 4k1k2 E0

) /
2. (24)
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As both eigenvalues are negative, this singularity is a stable nodal point. The eigen-
vectors are

V∓ =
(

k−1, (−k1 E0 + k−1 + k2 ∓
√

(k1 E0 + k−1 + k2)2 − 4k1k2 E0)
/

2

)
.(25)

We have proved that the solution of (21) with initial condition (S(0), E(0)) =
(S0, E0) denoted by (S(t), E(t)) will approach the singularity as Lemma 3 in [11].
Therefore, the solution will enter the singularity (0, E0) in the direction of an eigen-
vector. Since E(t) < E(0) and S(t) > 0 imply (E(t) − E0)/S(t) < 0, we see that
(S(t), E(t)) must enter (0, E0) in the direction of V−. Hence,

lim
t→+∞(E(t) − E0)/S(t) = −

(
k1 E0 − (k−1 + k2)

+
√

(k1 E0 + k−1 + k2)2 − 4k1k2 E0

) /
2k−1 (26)
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